O.P.Code: 19ME0319

solid surface.

R19

H.T.No.

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

B.Tech III Year II Semester Supplementary Examinations May/June-2024 HEAT & MASS TRANSFER

		HEAT & MASS TRANSFER		44	
		(Mechanical Engineering)	7.5	N.W 1	
Ti	ime	3 Hours	Max.	Mark	s: 60
		(Answer all Five Units $5 \times 12 = 60$ Marks)			
		UNIT-I			
	1 a	Enumerate the some important areas which are covered under the	CO1	L1	6M
		discipline of heat transfer.	~~4	~ ~	<i>-</i>
	b	Distinguish between conduction, convection and radiation modes of heat	COI	L3	6M
		Transfer.			
		OR	CO1	T 4	C3.5
:		List the basic laws which govern the heat transfer.	CO1	L1	6M
	b	What is conduction heat transfer? Explain its parameters.	CO1	L1	6M
		UNIT-II			
	3 a	Explain the fin effectiveness and fin efficiency.	CO ₂	L2	6M
	b	Calculate the amount of energy required to solder together two very long	CO ₂	L4	6 M
		pieces of bare copper wire 1.5 mm diameter with solder that melts at 190			
		⁰ C. The wires are positioned vertically in air at 20 ⁰ C. Assume that the			
		heat transfer coefficient on the wire surface is 20 W/m2 ^o C and thermal			
		conductivity of wire alloy is 330 W/m ^o C.			
		OR	500	¥ 0	(3.K
	4 a	Derive the expression for Reynolds number and how flows are	CO3	L3	6M
		determined by Reynolds number.	COA	T 4	C3 #
	b	What is lumped system analysis? Derive the expression for it.	CO ₃	L3	6M
		UNIT-III			
	5 a	What is the physical significance of the Nusselt number? How is it	CO ₃	L1	6 M
		defined.			
	b	Assuming that a man can be represented by a cylinder 350 mm in	CO3	L3	6M
		diameter and 1.65 m high with a surface temperature of 28 0C. Calculate			
		the heat he would lose while standing in a 30 km/h wind at 12 0C. Take			
		k=2.59 x10-6 W/m 0C, $v = 15x10-6 m2/s$, $Pr = 0.707$.			
		OR		~ .	<i>(</i>) <i>(</i>)
	6 a	Mention the empirical correlation of free convection.	CO3	L3	6M
	ŀ	*		L3	6M
		upward is placed in still air at 25 0C. Calculate the heat loss by natural			
		convection. The convective film coefficient for free convection is given			
		by the following empirical relation $h = 3.05(Tf)1/4$ W/m2 0C. where Tf			
		is the mean film temperature in degree Kelvin.			
		UNIT-IV			
	7 a		L1	C4	6M
	ŀ	Discuss the different types of processes for condensation of vapours on a	L1	C4	6 M

-		_
-	1	\mathbf{r}
		м
•	,	

	8	Mention completion in hall:		*)		
	O	a Mention correlation in boiling with proper expression.	L1	C 4	6M	
		b Explain Stefan Boltzmann Law, Kirchhoff's Law.	L1	C4	V-1	
	•	UNIT-V	1.71	C4	6M	
	9	A vertical tube of 60 mm outside diameter and 1.2 m long is exposed to	L1	C 4	12M	
		steam at atmospheric pressure. The outer surface of the tube is		0.	12111	
		maintained at a temperature of 50°C by circulated cold water through the				
		tube. Calculate the following				
		i). The rate of heat transfer to the coolant, and				
		ii). The rate of condensation of steam				
		OR				
1	0	Define Fick's law. Explain briefly.	L1	C4	12M	
		*** END ***	LI		I Z IVI	